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A B S T R A C T   

Objective: This study aims to explore speech as an alternative modality for human activity recognition (HAR) in 
medical settings. While current HAR technologies rely on video and sensory modalities, they are often unsuitable 
for the medical environment due to interference from medical personnel, privacy concerns, and environmental 
limitations. Therefore, we propose an end-to-end, fully automatic objective checklist validation framework that 
utilizes medical personnel’s uttered speech to recognize and document the executed actions in a checklist format. 
Methods: Our framework records, processes, and analyzes medical personnel’s speech to extract valuable in-
formation about performed actions. This information is then used to fill the corresponding rubrics in the checklist 
automatically. 
Results: Our approach to activity recognition outperformed the online expert examiner, achieving an F1 score of 
0.869 on verbal tasks and an ICC score of 0.822 with an offline examiner. Furthermore, the framework suc-
cessfully identified communication failures and medical errors made by physicians and nurses. 
Conclusion: Implementing a speech-based framework in medical settings, such as the emergency room and 
operation room, holds promise for improving care delivery and enabling the development of automated assistive 
technologies in various medical domains. By leveraging speech as a modality for HAR, we can overcome the 
limitations of existing technologies and enhance workflow efficiency and patient safety.   

1. Introduction 

In the medical field, developing medical residents’ clinical skills 
necessitates interaction with real-life patients. However, this imperative 
must be balanced with the ethical obligation to ensure patient safety[1]. 
Consequently, there is a growing interest in establishing performance- 
based assessments for medical practitioners that demand a demonstra-
tion of competence [2]. From that need, simulation-based assessment 
has emerged as a promising approach for evaluating hands-on skills, 
knowledge, clinical reasoning, communication skills, decision-making, 
and teamwork [2–5]. 

Qualitative and quantitative performance-based validation metrics 
have been developed to ensure that simulation-based assessment is a 
reliable examination method [6]. Among these metrics, task-specific 
checklists have gained popularity due to their simplicity. These check-
lists provide step-by-step guidance and criteria for assessing observable 
behaviors, offering a relatively intuitive evaluation method [7]. A 

comprehensive simulation task-specific checklist is designed by expert 
evaluators who outline the crucial actions candidates should perform, 
based on presented vitals and symptoms, to manage the scenario 
effectively [8,9]. However, this form of assessment has a significant 
drawback - the simulation examiner must complete the checklist while 
the simulation is being executed. This increases the possibility of human 
error arising from limited visual and auditory perception [10]. More-
over, this approach is expensive and time-consuming, as it requires the 
involvement of professional physicians [4,9,11,12]. Finally, it does not 
provide medical practitioners with the opportunity for independent 
training. 

Ideally, the checklist completion process should be automated using 
an objective framework capable of recognizing, monitoring, and doc-
umenting medical residents’ performance. Unlike human evaluators, 
machines can record and process abundant amount of visual and audi-
tory data, enabling them to minimize the costs associated with perfor-
mance assessments and allowing more residents to train in complex 
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scenarios independently. 
Adequate information sharing through verbal communication 

among medical personnel is crucial, particularly during complex re-
suscitations and medical emergencies [13]. Furthermore, simultaneous 
collaboration and reporting progress to the supervising physician are 
imperative to manage medical emergencies successfully. Therefore, we 
hypothesized that medical personnel communication embodies infor-
mation about the executed actions. 

Our prior work [14] underscored the importance of speech as a 
robust cue for activity recognition. We presented preliminary results of a 
speech-based framework capable of identifying medical activities, 
which provided valuable insights for designing a comprehensive speech- 
based activity recognition system for the medical domain. 

2. Related work 

Human Activity Recognition (HAR) involves identifying distinct ac-
tions or movements based on data captured by sensors. Much of the 
existing research emphasizes on the recognition of visually observable 
actions [15–24]. However, it’s crucial to acknowledge that certain ac-
tivities, such as verbal interactions, do not necessarily depend on visible 
movements or objects for their identification. Therefore, audio data can 
be a potent indicator for recognizing a broad spectrum of activities 
[24–27]. 

Within the medical field, the integration of HAR technology presents 
unique hurdles due to the fast-moving, multitasking nature of clinical 
environments [25,28–30]. Prior studies have investigated modalities 
like RFID, wearable sensors, and video for recognizing clinical activities. 
RFID and wearable sensors present benefits in terms of cost and size, but 
their effectiveness is hampered by environmental factors that interfere 
with signal reception, the limited number of objects that can be tagged, 
and the material properties of medical instruments. The use of video, 
while helpful, presents limitations such as privacy issues for patients, 
potential obstruction of camera views by medical personnel and 
equipment in congested areas. 

Previous research has explored the potential of speech-based HAR in 
the intricate contexts of medical emergencies [25,26,31,32]. These 
studies focused on recognizing activities’ types and performance stages 
through verbal communication in real-life hospital environments, 
providing insights into the challenges associated with designing speech- 
based activity recognition frameworks. 

These papers solely focus on activities that are commonly performed 
during trauma resuscitation. Second, these works only utilized keyword- 
based methods that rely on a predefined keywords list. 

In contrast to these papers, our work implements an end-to-end 
speech-based HAR for evaluating anesthesia residents clinical skills in 
a simulation environment. Medical simulations provide a controlled 
training and assessment environment that emulates real-life settings 
while minimizing disturbances and allowing examinees to speak directly 
and fluently without the stress of endangering patients. In addition, we 
chose a more direct approach to record the medical personnel’s speech, 
thus reducing interference and background noise. Furthermore, we 
developed a sentence-level methodology for identifying activities from 
medical members spoken language. This approach is more suitable for 
analyzing human language and eliminates the need for a predefined 
keywords list. 

Our work introduces several methodological innovations and con-
tributions. Firstly, we investigate the feasibility of speech-based activity 
recognition in the dynamic clinical domain. Compared to standard 
modalities like computer vision and RFID, speech is better suited for 
preserving patient privacy and addressing the sparsity of medical 
emergencies. Additionally, speech can provide robust cues for activities 
that are not solely based on actions or objects. This contributes to the 
literature by (1) characterizing the benefits and challenges of using 
speech as a modality for action recognition in the medical domain and 
(2) presenting a comprehensive pipeline for action recognition from raw 

audio recordings. The insights gained from this research will guide the 
development of an automatic activity recognition system suitable for 
real-life hospital settings. 

Secondly, we propose a novel algorithm for sentence matching. 
Traditional methods relied on word-level approaches, such as lexical 
and semantic similarity, to estimate the relationship “strength” between 
text corpora through a numerical description obtained according to the 
word level comparison [33–36]. Nonetheless, these methods are less 
effective when significant variations exist between sentences, as often 
found in free speech. To address this challenge, we explore the potential 
of pre-trained language model sentence embeddings. By leveraging pre- 
trained language models like “BERT” [37], we generate fixed-length, 
multi-dimensional embeddings that capture the meaning of the repre-
sented sentence. We specifically employ the cross-encoder structure of 
language models and incorporate a classification head to enable 
sentence-level analysis and extract more informative information. 

The utilization of sentence-based analysis opens new possibilities for 
examining medical communication. Ineffective communication among 
medical professionals is a leading cause of medical errors and patient 
harm, particularly in acute care units where managing communication 
becomes more challenging [38–40]. In an attempt to overcome this 
challenge, physicians execute the “Readback” protocol – a procedure 
whereby the receiving station repeats a received message to ensure a 
safe closed-loop communication between medical personnel [41]. Our 
work introduces an innovative approach for detecting inappropriate 
instances of “Readbacks” using the proposed sentence similarity calcu-
lation methodology. This approach successfully identifies cases that may 
have been overlooked by human examiners and holds potential for 
integration into hospital systems in the future. 

3. Materials 

3.1. Participants 

The Israel Society of Anesthesiologists organizes a preparation day to 
allow anesthesiology residents to practice in high-fidelity simulations 
and receive feedback from experienced anesthesiologists. This study 
focuses on analyzing the performance of participants during these 
preparation days. 

Forty-seven senior anaesthesiology residents participated in the 
study, comprising 34 (72.3%) males and 13 (27.7%) females. The resi-
dents were recruited from 24 different hospitals, representing a diverse 
range of medical simulation experience. This diversity allows us to train 
and evaluate the framework’s robustness using a comprehensive 
dataset. 

Each resident was recorded while managing up to two different 
simulation scenarios. The dataset used for training and evaluating our 
framework can be found in the supplementary file (Table S1). 

Two research team members assumed the roles of a nurse and a 
medical intern and assisted the examinees, based on their orders, to 
enhance the realism of the scenarios. Additionally, an experienced 
anesthesiologist evaluated the residents’ performance using a scenario 
checklist and provided feedback after the examination. 

Before participating in the study, all participants signed an informed 
consent form and completed a demographic questionnaire, including 
questions about their previous experience with medical simulations. The 
Rambam Medical Center IRB committee approved the study. 

3.2. Medical simulations 

The framework’s evaluation involved assessing senior anesthesia 
residents’ skills using five simulation scenarios. An experienced anes-
thesiologist and a medical simulation expert collaboratively developed 
these scenarios. Additionally, two scenarios were derived from previous 
Israeli Anesthesiology Board certification simulation exams. The simu-
lation scenarios encompassed the following cases: (1) the management 

S. Gershov et al.                                                                                                                                                                                                                                 



Journal of Biomedical Informatics 144 (2023) 104446

3

of a patient with a severe anaphylactic (allergic) reaction, (2) a post- 
surgery patient experiencing severe bradycardia (slow heart rate), (3) 
a post-operative patient suffering from opiate overdose, (4) a post- 
operative patient suffering from opioid overdose, and (5) a post- 
operative patient experiencing severe hypoglycemia (low blood sugar 
level). 

As done in similar medical simulation studies [42–45], a detailed 
checklist was created for each scenario to ensure a comprehensive 
assessment. Each checklist comprised an average of 35 tasks, which 
were evaluated based on the quality of their execution following 
established medical guidelines. The score for each checklist task ranged 
from 0 to 2, with the following scale: 0 for tasks not observed, 1 for tasks 
requiring improvement, and 2 for tasks meeting expectations. 

3.3. Data acquisition system 

For the simulation’s patient role, we utilized two full-body manikins 
designed explicitly for Advanced Cardiovascular Life Support (ACLS) 
training: MegaCode Kelly and SimMan 3G, manufactured by ‘Laerdal’. 

To capture the simulations comprehensively, we recorded video and 
audio using StreamPix digital video recording software (NorPix Inc.). 
Subsequently, an independent human observer reviewed the recorded 
video data to validate the checklist assessments made by an experienced 
anesthesiologist. 

For audio recordings, all simulation participants (resident, nurse, 
and examiner) wore wireless lavalier microphone transmitters con-
nected to a digital mixer. Each audio channel was saved separately to 
minimize recording disturbances and ensure clear audio capture. 

The simulations were conducted within the hospital’s post- 
anesthesia care unit (PACU) and incorporated real-life medical equip-
ment and utilities, creating an authentic training environment. (Fig. 1.). 

4. Methods 

4.1. End-to-end automatic checklist completion 

After the data collection, the checklist tasks are completed using the 
proposed pipeline, which consists of several stages. Firstly, we per-
formed preprocessing on the acquired data to remove any disturbances 
in the recording and enhance the efficiency of subsequent steps. Next, 
we employed Google’s speech-to-text API to transcribe the processed 
recordings automatically. Subsequently, we identified keywords within 
each transcribed sentence. Finally, we implemented a matching process 
between the checklist tasks, the specified keywords, and the sentences 

from the transcription corpus. 
The algorithm produces a filled-out checklist where the tasks iden-

tified by the framework are associated with a matching sentence from 
the transcription and its timestamp. For a more comprehensive under-
standing of the process please refer to Fig. 2, which provides a detailed 
description. 

4.2. Data preprocessing 

Raw audio recordings containing severe audio-visual disturbances 
are unsuitable for accurate automatic transcription using Google’s 
speech-to-text API. Therefore, this stage also filters out simulation re-
cordings that are incomplete or contain severe artifacts, thereby 
removing them from the dataset. The preprocessing stage consists of 
three steps: 

1. Speech Source Separation. Due to the limited space in the simu-
lation area, the simulation participants (resident, nurse, and intern) 
are in close proximity to each other, resulting in overlapping audio 
signals. Additionally, background noises from patient monitors and 
defibrillators are present in the recordings. To address this, we 
applied a source separation algorithm (commonly referred to as the 
‘cocktail party problem’ [46]) on each raw audio recording, sepa-
rating the mixed signal into a set of source signals without additional 
information about the sources or the mixing process [47]. 

In the past few years, several open-source projects have imple-
mented speech source separation using deep learning methods 
[48–50]. For this study, we implemented the Conv-TasNet [51] 
network provided by Asteroid [48], trained initially on English 
speech. We performed fine-tuning based on the work of Anidjar et al. 
[52] to adapt it to Hebrew speech and the specific recording settings 
of the simulations. For each team member the network outputs three 
audio channels’ which represent the main speaker, the secondary 
speaker, and background noise. Thus, a total number of nine audio 
files are generated.  

2. Primary File Identification. Instead of transcribing all nine audio 
files, which is inefficient, we simplified the process by treating the 
audio files as a vector and calculated the L2 norm for each recording. 
Afterward, we chose the primary file based on the highest norm 
values, indicating speech signals’ presence. The selection process is 
repeated for each team member. 

It Is important to note that determining the primary file for the 
nurse audio channel is more challenging. It is likely due to the 
significantly less frequent speech intervals compared to the physi-
cian examinee.  

3. Speaker Diarization. Speaker diarization involves determining 
“who spoke when” in an audio recording and assigning labels to 
audio segments corresponding to speaker identities [53]. Machine 
learning techniques have been successfully applied to speaker dia-
rization, contributing to state-of-the-art performances in automatic 
speech recognition frameworks [53–55]. In this work, our goal was 
to provide a complete transcription of the simulation recording with 
timestamps for each sentence. We utilized the ‘pyAudioAnalysi’ li-
brary [56], incorporating an SVM model for semi-supervised audio 
segmentation. The model takes an uninterrupted speech recording as 
input and outputs endpoints corresponding to “silence” areas, aiding 
speech segmentation accuracy. In addition, we performed fine- 
tuning of the thresholds to improve the division accuracy. 

4.3. Morphological and syntactic parsing 

When dealing with Morphologically Rich Languages (MRLs) like 
Hebrew, traditional syntactical analysis faces a significant challenge due 
to the high degree of morphological ambiguity. However, 

the process of lemmatization which converts input tokens into their 
constituent morphemes [57], can effectively address this challenge [58]. 

Fig. 1. Data acquisition system. (A) Nurse working area; (B) Physician working 
area; (C) Overview of the simulation area; (D) Patient monitor. The blurred 
faces in this figure are human-generated. 
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In their paper [59], Tsarfaty et al. introduced a parser that leverages 
global context to accurately decompose raw Hebrew tokens into their 
respective morphemes. We utilized their parser in our study to reduce 
the variance in the transcription database, thereby improving the results 
of the matching algorithm. 

Please refer to the supplementary file (Figure S1) for a visual rep-
resentation of MRL parsing. 

4.4. Matching algorithm 

In our previous work [14], the matching algorithm utilized a single 
heuristic to assess the similarity between a transcribed sentence and a 
checklist task. In this study, we proposed a more advanced algorithm to 
provide the framework with more accurate information. The algorithm 
applied two granulation levels to analyze the simulation participants 
speech and found the most suitable match for a task in the checklist. This 
process consists of two components:  

1. Word Importance Similarity – similarity on a word level 
To guide the examiner in identifying the different assignments, 

each task in the checklist includes a brief description of the expected 
treatment. After applying lemmatization to each task description, we 
selected specific words that best represent the task and generated a 
“bag-of-words” representation. These keywords typically include 
medical terms, medications, procedures, instruments, and combi-
nations of objects and verbs. 

To measure the similarity between a task description and a sen-
tence in the transcription, we used the term frequency-inverse 
document frequency (TF-IDF) [60] approach with a threshold. TF- 
IDF is a numerical statistic that reflects a word importance to the 
sentence central theme. By calculating the TF-IDF score for each 
word in the task description, we can then choose the word with the 
highest value as the TF-IDF threshold of the current task. In this 
work, we choose two words for each task where the lower value is the 
threshold. We then merged all team members transcriptions, three in 
total, into a single corpus based on the timestamps of each sentence 
and calculated the TF-IDF score for each word in a sentence. Finally, 
a sentence will be considered a suitable match if it contains at least 

one of the two words of the task and at least one of them has a TF-IDF 
value that is equal or larger than the threshold.  

2. Sentence Embedding Similarity – similarity on a sentence level 
Semantic Textual Similarity (STS), the task of determining the 

semantic equivalences between two textual contents, is considered a 
daunting research challenge. This problem becomes particularly 
significant for under-resourced languages such as Hebrew [36,61]. 
Historically, STS methodologies hinged on knowledge-based, corpus- 
based, and deep neural network approaches [35]. Nonetheless, the 
recent surge in machine learning advancements brought forth lan-
guage models – transformer-based models that utilize sentence 
embedding methods and similarity measurements like cosine simi-
larity or Euclidean distance. These models surpassed their pre-
decessors and achieved unprecedented results in multiple NLP 
domains [37,62–64]. 

In our study, we harnessed the capabilities of AlephBERT [58], a 
language model trained specifically on Hebrew corpora. However, 
directly applying language models to niche domains, such as the 
medical field, may not always result in optimal outcomes due to the 
domain-specific language. To tackle this, we applied domain adap-
tation, which necessitates the fine-tuning of AlephBERT using a 
masked language model task. During this process, we obscured to-
kens (usually words) in a sentence, specifically technical terms and 
jargon not previously encountered during the model training, and 
then guided the model to replace the mask with a suitable token. This 
helps the model to gain a contextual grasp of the entire sentence. Post 
fine-tuning, we computed the similarity between sentence vectors 
using cosine similarity. This involves channeling the embeddings 
from the fine-tuned model output layer through a pooling operation, 
producing fixed-sized vectors for each input sentence. We then 
deployed the mean squared-error loss as our training objective 
function. (Fig. 3.). 

4.5. Checklists comparison 

An independent assessor conducted a secondary analysis and filled 
out the checklist again. Similar to the online examiner, the offline 
evaluator used a scoring range from 0 to 2 for each task on the checklist. 

Fig. 2. Automatic checklist process. End-to-end description of the checklist completion pipeline and the generated output.  
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Unlike the human evaluators who assess the quality of execution, our 
algorithm simply verifies the task completion, thus attributing a binary 
score. This necessitated a similar binary scoring approach for the 
human-completed checklists. 

To compare the outputs of our framework with the checklists 
completed by humans (both online and offline), we adopted the F-score 
[65] as our evaluative metric. The F-score, also referred to as the 
F1-score, is frequently used to assess binary classification models, 
computing the harmonic mean of precision and recall. 

In addition, we gauged the concurrence between human evaluators 
and our algorithm using the Intraclass Correlation Coefficient (ICC) 
score [66]. The ICC, a universally accepted method for gauging rating 
reliability, ranges from 0 to 1, with a higher ICC score nearing 1 signi-
fying greater similarity within the same group, and a lower score indi-
cating lesser similarity. For our study, we computed the ICC score using 
one-way random effects, absolute agreement, and multiple raters, rep-
resented as ICC(1, k). 

4.6. Evaluation of the matching algorithm 

To assess the performance of our framework pipeline, we will eval-
uate the matching algorithm in two stages. First, we will examine the 
hypothesis that the algorithm can effectively document the executed 
actions. Second, we will compare the filled-out checklists from all three 
evaluators: the online evaluator, the offline evaluator, and the 
framework. 

Our underlying assumption is that the offline evaluator, who has no 
time limitations and can review the video multiple times from different 
angles, will produce the most accurate checklist. 

To validate the framework capability of accurately documenting the 
executed actions, we will compare its performance with other algo-
rithms designed for similar tasks. This comparison will help us assess the 
effectiveness and accuracy of our framework in capturing the relevant 
actions during the simulation. 

In addition, we performed a more detailed analysis by dividing the 
different checklist actions into five major categories: 

• Diagnosis– Asks for information, recognizes condition, asks for pa-
tient chart and labs, etc.  

• Physical exam – Physical examination of the patient, i.e., listening to 
the heart and lungs.  

• Medication management – Request specific medication and dosage.  
• Medical equipment – Requests for a defibrillator, oxygen mask, ECG, 

etc.  
• Procedure management – Follows ACLS protocol, ROSC protocol, 

call for help, etc. 

4.7. Recognition of communication failures 

In the available dataset, events of “Readback” failures are marked 
and divided into two groups: administering a wrong medication and 
administering an improper dosage. For this analysis, we assumed that 
the nurse would perform a “Readback” as soon as possible and with 
minimal variation from the physician’s original sentence. For each 
labeled “Readback” in the appropriate and inappropriate dataset, we 
calculated the absolute value of the cosine similarity between the sen-
tences and converted it into a percentage. We speculated that the dif-
ferences in similarity scores are significant and can be used as a 
classification criterion. To validate our hypothesis, we applied Welch t- 
Test [67]. This statistical test helps determine whether there is a sig-
nificant difference between the means of two groups, even when the 
variances are unequal. Based on the results of this test, we developed an 
algorithm to detect inconsistencies in the “Readback” dialogues. 

5. Results 

5.1. Evaluation of the matching algorithm 

We compared the impact of different matching algorithms on the 
framework performance, as shown in Table 1. As it shows, our proposed 
algorithm achieved the highest F1 Score. 

In addition, after differentiating the checklist actions into 5 major 
classes, we received a more detailed analysis of the matching algo-
rithms’ impact (Table 2): 

5.2. Evaluation of audio channels impact on accuracy 

Another aspect of the framework that we evaluated was the impact of 
each simulation participant on the framework’s accuracy. We show that 
each participant in the simulation contributes essential information via 

Fig. 3. Model architecture to compute similarity scores. This architecture is also used with the regression objective function for fine-tuning our dataset.  

Table 1 
Ablation study of the algorithm’s performances over the collected data. This 
evaluation considered the number of tasks recognized by the algorithm and the 
appropriate F1 score.  

Algorithm Total 
Tasks 

Tasks 
Executed 

Framework 
Identified 

F1 

Score 

Naïve approach 

2513 2079 

1833 0.794 

TF-IDF similarity 1871 0.803 

Sentence embedding 
similarity 

1874 0.810 

TF-IDF & Sentence 
embedding similarity 

1903 0.834  
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speech, which is necessary for the human evaluator as much as it is for 
our framework. This implies that while monitoring the examinee’s 
performance, the examiner must also listen carefully to other partici-
pants. This is clearly indicated by improved framework performance 
with additional audio channels (see Table 3). 

The following table presents the impact of each participant recording 
on the framework accuracy measured by F1 Score: 

5.3. Evaluation of the framework performance in comparison to the 
human evaluator 

In evaluating the framework as a replacement for the online human 
examiner, we assessed the level of agreement among three evaluators: 
the online human evaluator, the offline human evaluator, and our 
algorithm. 

On the one hand, a framework that utilizes all audio channels has a 
greater agreement with the offline evaluator. While on the other, a 
framework that only relies on the physician’s audio channel has a 
greater agreement with the online evaluator. This result is indicated in 
the following table: 

5.4. Assessment of communication failures 

In the evaluation of sentence similarity, the first step aimed to 
establish a baseline value for a random pair of sentences. This involved 
calculating the absolute value of the cosine similarity score for each 
combination of sentence pairs in the complete dataset. The calculation 
was done without considering the context or time difference between 
the sentences. The average score obtained from this calculation was 
17.4% ± 15.8. 

Based on the available “Readback” dataset, the following results are 
generated: 

As we mentioned earlier, we applied Welch’s t-Test on the “Read-
back” dataset to validate our hypothesis, which resulted in a test statistic 
of 18.508 and the corresponding p-value is 5.415e− 10. 

6. Discussion 

Most literature works in the field of HAR have reported promising 
results by focusing on visual and sensory data. However, while there are 
some activities that are not visually detectable, they can be verbally 
reported. Furthermore, these modalities are unsuitable for the multi-
tasking, fast-paced, and concurrent processes of clinical activities. 
Moreover, visual-based activity recognition in the medical domain is 
considered problematic because of patient privacy concerns and 

frequent obstruction of camera views. 
Previous works that explored the potential of speech-based HAR in 

the medical domain, have focused on recognizing activities’ that are 
commonly performed during trauma resuscitation. These works utilized 
keyword-based methods that rely on a predefined keywords list and a 
manual transcription of the team verbal communication. 

A comparison between these works and ours is located in the sup-
plementary file (see Table S3). 

In contrast to these papers, our work implements speech-based HAR 
for evaluating clinical skills in a simulation environment. More specif-
ically, we introduce an end-to-end, fully automatic framework for 
objective checklist validation. By exploiting the analysis of medical 
professionals uttered speech, this framework can efficiently and accu-
rately fill in relevant sections of a checklist, by harnessing the power of 

Table 2 
Ablation study of the algorithm’s performances over the collected data. This evaluation granulates the recognized tasks based on category. The reported values are the 
F1 scores. N - the number of executed tasks; n – the number of identifications made by the human observer.  

Algorithm Diagnosis 
N = 410; n = 330 

Physical exam 
N = 375; n = 270 

Medication management 
N = 761; n = 729 

Medical equipment 
N = 356; n = 344 

Procedure management 
N = 177; n = 126 

Naïve approach 0.761 0.561 0.910 0.929 0.542 
TF-IDF similarity 0.753 0.592 0.914 0.958 0.577 

Sentence embedding similarity 0.724 0.605 0.908 0.944 0.652 
TF-IDF & Sentence embedding similarity 0.804 0.717 0.947 0.953 0.706  

Table 3 
The effect of each member’s speech recording on the framework accuracy 
measured by F1 score.  

Single Audio Channel Multi Audio Channels 

Physician Nurse Intern Physician 
& Nurse 

Physician 
& Intern 

Nurse 
& 
Intern 

Physician 
& 
Nurse & 
Intern 

0.683 0.588 0.122 0.774 0.755 0.611 0.834  

Table 4 
All three evaluators’ ICC scores based on one-way random effects, absolute 
agreement, multiple raters - ICC (1, k).   

Evaluator  

Audio channel Online Offline Framework 

Evaluator Online All Audio 
Channels 

1 0.655 0.787 
Offline 0.655 1 0.822 

Framework 0.787 0.822 1 

Framework Physician Audio 
Channel 

0.849 0.734 1  

Fig. 4. Illustration of the communication failures statistical results. A Boxplot 
of the sentence’s similarity scores from the labeled “Readback” dataset and 
random pairs from the available dataset. RB – Readback. 
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sophisticated machine learning algorithms and techniques. 
We initially evaluated various audio preprocessing parameters to 

identify optimal audio segments. Subsequently, we transcribed the 
simulation audio recordings using these parameters and employed a 
multi-level similarity-based matching algorithm. Finally, a performance 
assessment of the algorithm was conducted using different similarity 
metrics. 

It is important to note that while our framework can process several 
speakers without damaging its performance, it may not fully capture the 
residents’ nuanced actions. Nonetheless, we believe this end-to-end, 
speech-based, fully automatic framework for assessing medical resi-
dents is the first of its kind, representing a significant advancement in 
the field. 

Another crucial aspect of the framework is its ability to identify 
medical errors associated with communication failures among physi-
cians and nurses, a vital factor for ensuring patient safety. Our obser-
vations indicate that human examiners occasionally overlooked such 
errors. To address this issue, our framework incorporates the evaluation 
of “Readback” procedures, harnessing the potential of transformer- 
based language model such as AlephBERT [58]. 

The successful creation and utilization of this framework carries 
substantial implications for the healthcare industry. This kind of audio- 
driven framework could find practical application in real-world medical 
environments like emergency rooms and operating rooms. By offering 
automated checklist validation based on audio cues, this framework can 
streamline and boost the monitoring and evaluation process of medical 
procedures. Furthermore, this framework holds promise for the incep-
tion of automated assistive technologies across a broad range of medical 
sectors. By capitalizing on advanced speech analysis techniques, anal-
ogous frameworks could be developed to aid medical professionals in 
various tasks such as documentation, decision-making, and quality 
assurance. Such prospective technological developments could 
dramatically enhance efficiency, precision, and patient safety. 

6.1. Evaluation of the matching algorithm 

The results in Tables 1 & 2 show that the TF-IDF similarity and the 
sentence embedding similarity algorithms outperformed our original 
algorithm. Furthermore, when both methods were combined in the 
checklist-filling process, there was a significant improvement in the 
framework’s results across all categories. This demonstrates that the 
new framework is more suitable for autonomously documenting the 
actions performed during clinical simulations. 

The benefits of using AlephBERT embeddings as a method for sen-
tence comparison will be discussed further in a dedicated section, 
providing more detailed insights into its effectiveness. 

Table 4 indicates that the TF-IDF similarity algorithm achieved 
better results in specific categories than the sentence embedding simi-
larity algorithm. This is primarily due to particular tasks that can be 
classified as “executed” based on a single word. For instance, in the 
condition diagnosis task, where the examinee is expected to explicitly 
state the patient’s condition (e.g., Anaphylaxis, VF), the examiner may 
consider the task accomplished even if the participant did not specif-
ically use the checklist-required words. The online evaluator might 
consider phrases from the same semantic field (e.g., “allergies” and 
“sensitivities”) as suitable alternatives to the word “anaphylaxis,” which 
reflects the examinee’s accurate decision-making. 

While the sentence embedding similarity algorithm is effective in 
many cases, the TF-IDF similarity algorithm is more suitable for tasks 
where a single word carries significant meaning and indicates task 
completion. These findings highlight the importance of considering 
contextual information and semantic relationships when assessing the 
execution of specific tasks. 

Overall, these findings contribute to understanding the strengths and 
limitations of different algorithms in the framework and provide valu-
able insights for further refining the framework’s performance and 

enhancing its accuracy in documenting executed actions during clinical 
simulations. 

6.2. Evaluation of the framework as a suitable replacement for the online 
human examiner 

Our underlying assumption is that the offline evaluator is the most 
accurate due to the ability to re-examine simulations with no time 
limitations and from multiple perspectives is reasonable. Thus, consid-
ering the offline evaluator as the ground truth in this experiment pro-
vides a reference point for evaluating the accuracy of other evaluators, 
including the online evaluator and the framework. 

Previous works have reported inferior ICC scores among online 
evaluators [68–70], which indicates that relying solely on the online 
evaluator may lead to inadequate documentation and evaluation of 
medical performance. In addition, these findings further support the 
need for a robust objective checklist validation framework. 

As presented in Table 4, the algorithm developed in this study 
demonstrates higher reliability and lower error rates compared to the 
online evaluator. This suggests that the framework can serve as a suit-
able alternative to an experienced online evaluator. However, there is 
still room for improvement in terms of ICC scores, indicating the po-
tential for further refinement and enhancement of the framework. 

It is worth noting that providing the algorithm with only the exam-
inee recordings resulted in improved ICC scores with the online evalu-
ator. However, this came at the expense of reduced ICC scores with the 
offline evaluator and less accurate F1 scores on the action recognition 
task. This finding suggests that the online evaluator primarily focuses on 
the examinee, leading to disagreements with the offline evaluator. 

Since the goal is to emulate the performance of the offline evaluator, 
who is likely to be more accurate, the algorithm described in this paper 
is designed to process the recordings of all participants before making a 
final judgment. Thus provide a reliable and consistent assessment of 
medical performance. 

6.3. Assessment of communication failures 

Fig. 4 demonstrates the application of the AlephBERT model in 
pinpointing communication failures. The plot exhibits the similarity 
scores among sentences, facilitating the establishment of a classification 
threshold vital for differentiating between appropriate and inappro-
priate “Readback” dialogues. To confirm these findings, we performed 
Welch’s t-test, yielding a p-value that endorses the framework’s 
reliability. 

6.4. BERT embeddings as a method for sentence comparison 

Until recently, neural network models generated word embeddings 
that remained fixed regardless of the surrounding context. On the other 
hand, BERT was among the first models to introduce dynamic word 
representations influenced by the neighboring words. This contextual 
information allows BERT to capture broader linguistic nuances and 
improve the model’s overall performance. 

It is important to note that direct word-level similarity comparisons 
using BERT embeddings are unsuitable due to their contextual nature. 
The embedding of a word varies depending on the sentence it appears in. 
However, comparing sentence embeddings is still a valid approach. By 
employing a superficial similarity metric, we identified sentences with 
contextual relevance, which was instrumental in assessing the similarity 
between checklist task descriptions and the transcriptions of partici-
pants. Furthermore, the fine-tuned AlephBERT model demonstrated its 
ability to rank sentences based on similarity, even when dealing with 
subtle differences. This was evident in distinguishing between appro-
priate and inappropriate “Readback” dialogs, where minor variations in 
sentence wording played a crucial role. 

As technology continues to advance, Large Language Models (LLMs) 
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have emerged as a groundbreaking innovation in the field of NLP. These 
models, such as GPT-4 [71], have the ability to generate human-like 
text, revolutionizing natural language processing tasks. And specif-
ically in the medical domain [72]. However, these models require 
massive computational resources. Thus, in this study we used Aleph-
BERT which provided meaningful embedding and may be executed 
locally using reasonable resources. 

6.5. Limitations 

One limitation of our methodology is the algorithm’s inability to 
accurately identify tasks that are associated with procedure manage-
ment and physical exams. These categories often involve actions that are 
predominantly performed without verbal communication, such as 
undressing the patient, taking vital measurements, or executing the 
ACLS protocol. Since our algorithm relies on analyzing speech, these 
non-verbal tasks are undetectable. 

To address this limitation, one potential solution is to incorporate 
data fusion by combining verbal communication with data from the 
simulation manikin. For example, SimMan 3G can detect physical pro-
cedures like pulse measurements and chest compressions. By integrating 
such data, we can compensate for cases where speech is not expected or 
required. 

Additionally, when performing physical exams on real-life patients, 
physicians usually verbally communicate with the patient, explaining 
the specific exam they will conduct (e.g., “I will now listen to your 
lungs”). Regrettably, the incorporation of a simulated patient may have 
induced a feeling of unrealism among some participants. This might 
have led them to deviate from standard practices, thereby adding an 
extra layer of complexity to the process of speech-based recognition. 

Another significant challenge is the nuanced nature of residents’ 
actions. While speech provides evidence of actions being executed, it 
offers limited information regarding their quality. The quality of an 
action can significantly impact whether a checkbox is satisfied or not. To 
overcome this challenge, incorporating additional modalities of data, 
such as video recordings and sensory data, can enrich the dataset and 
provide more accurate predictions that go beyond what can be inferred 
from a speech-based framework alone. 

6.6. Future work 

We plan to continue our research in the medical domain and explore 
the applicability of language models further. Improving the model’s 
comprehension of “Readback” sentences is a valuable direction to pur-
sue, as it can enhance the accuracy and effectiveness of the framework. 

In addition, investigating sentiment analysis of both speech and text 
in the clinical setting is also a promising avenue for research. Sentiment 
analysis can provide insights into the emotions and attitudes expressed 
by medical personnel and patients, which can be valuable for decision- 
making and improving overall healthcare outcomes. Expanding the 
research in this area can contribute to developing tools and models that 
aid in understanding sentiment in clinical interactions. 

Incorporating the results of our project as part of a machine-learning 
model to assess resident performance aligns with the long-term objective 
of leveraging technology for performance evaluation in medical edu-
cation. Thus, by integrating our findings into a comprehensive machine- 
learning model, we can contribute to developing objective and data- 
driven approaches for assessing and enhancing the skills of medical 
residents. 

Ethical considerations 

It is crucial to clarify that we gathered valuable insights and evalu-
ated the framework’s performance using simulated scenarios without 
exposing actual patients to potential risks. In addition, we have ensured 
compliance with ethical standards and guidelines for human 

experimentation, including adherence to the Helsinki Declaration. 
Any document of harmful actions has been removed from our data-

base during the development of the proposed framework. This ensures 
that the framework operates within safe and acceptable boundaries. 

The ability of our autonomous model to incorporate physician input 
without interfering with their work is a significant advantage. This al-
lows the model to leverage the expertise and insights of physicians while 
still maintaining its autonomous functionality. In addition, it highlights 
the potential for collaboration between human experts and AI systems in 
the medical field. 

As mentioned, this work represents a proof of concept for a fully 
autonomous simulation framework. Understandably, in future work, we 
plan to address potential limitations, such as examining potential 
downfalls, interface design, and considering the mental model of human 
users. These considerations will contribute to further developing and 
refining of our framework, making it more robust, user-friendly, and 
aligned with the needs and expectations of medical professionals. 
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