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Abstract. During surgery, the patient’s vital signs and the field of endo-
scopic view are displayed on multiple screens. As a result, both surgeons’
and anesthesiologists’ visual attention (VA) is crucial. Moreover, the dis-
tribution of said VA and the acquisition of specific cues might directly
impact patient outcomes.

Recent research utilizes portable, head-mounted eye-tracking devices
to gather precise and comprehensive information. Nevertheless, these
technologies are not feasible for enduring data acquisition in an operat-
ing room (OR) environment. This is particularly the case during medical
emergencies.

This study presents an alternative methodology: a webcam-based gaze
target prediction model. Such an approach may provide continuous visual
behavioral data with minimal interference to the physicians’ workflow in
the OR. The proposed end-to-end framework is suitable for both stan-
dard and emergency surgeries.

In the future, such a platform may serve as a crucial component of
context-aware assistive technologies in the OR.
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Operation Room · Webcams · Deep Learning

1 Introduction

While under surgery, there is a multitude of clinical information about the
patient that the anesthesiologist and surgeon must monitor and oversee. Because
most information is presented visually, the physicians’ visual attention (VA)
becomes vital. Furthermore, the distribution of said VA and the acquisition of
signals at specific moments during the procedure may directly impact the ability
to provide better care [12,13].

Several studies investigated the preoperative team members VA [1,6,11,12,
14,18] using a wearable eye-tracking device to record participants’ gaze. Though
these devices provide accurate data, they do not offer sustainable and ecological
solutions for long-term data collection in the OR. These devices have limited
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battery life, require a calibration stage before use, and can become inconvenient
for physicians after extended usage [16]. Our study presents an alternative app-
roach that examines the physicians’ monitor observation patterns. By placing a
webcam on top of the relevant monitor and continuously recording video data
with minimal interference, we can recognize scenes in which the physicians’ gaze
is directed at the camera (i.e., direct gaze at the monitor). Such a system will
facilitate the collection of vast amounts of data, enabling in-depth analysis of the
medical care provider’s work. Furthermore, it may serve as a crucial component
of context-aware assistive technologies in the OR.

Papers in the field of eye-tracking have tackled the task of Gaze Target
Prediction - detecting the attended visual target in the scene and provided new
datasets, challenges, and models that produce human-like results [2,4,15,17].
These new developments have not been implemented the medical domain, though
they may significantly improve medical education, training, and patient safety.

Chong et al. [2] presented a state-of-the-art architecture for detecting
attended visual targets. However, this model does not distinguish between a gaze
directed toward an “out-of-frame” object and a direct gaze toward the camera.
This requires a modified approach that will allow the model to recognize scenes
in which the physicians’ gaze is directed at the camera (i.e., screen). Therefore,
we chose to address this challenge using “Onfocus” detection, which identifies
whether the individual’s focus is on the camera [21].

Onfocus detection in unconstrained capture conditions, such as the OR,
presents multiple challenges due to the complex image scenes, unavoidable occlu-
sion, diverse face directions, constant changes in the frame focus, the number of
appearing objects, and imagery factors (e.g., blur, over-exposure). Zhang et al.
[21] presented a model and a dataset to evaluate onfocus detection under these
challenges.

Our study presents the implementation of a webcam-based eye contact recog-
nition model. First, we improved both Chong et al. and Zhang et al. models and
provided new SOTA results. We then evaluate our model on new data - webcam
videos of physicians’ gaze during medical simulations (MS) and in real-life OR
settings. In the future, our methodology may be employed to assess the effect of
VA on patient care.

The paper’s contributions are as follows: (1) an improved deep learning model
for detecting the attended visual target; (2) an end-to-end eye-contact tracking
framework for analyzing the distribution of VA of preoperative team members.

2 Related Work

2.1 Face Detection

YOLO (“You Only Look Once”) is a popular family of real-time object detection
algorithms. The original YOLO object detector was published by Redmon et al.
[10]. Since then, different versions and variants of YOLO have been proposed,
each providing a significant increase in performance and efficiency.
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Previously, Qi et al. [8] published a modification of the YOLO architecture,
YOLO5Face, which treats face detection as a general object detection task. In
their work, they designed a face detector model capable of achieving state-of-
the-art performance in varying image sizes by adding a five-point landmark
regression head into the original architecture and using the Wing loss function
[5].

2.2 Facial Landmarks

Facial landmarks (FL) detection is a computer vision task in which a model
needs to predict key points representing regions or landmarks on a human’s face
(i.e., eyes, nose, lips, etc.).

Dlib-ml [7] is a cross-platform open-source software library with pre-trained
detectors for FL. The Dlib detector estimates the location of 68 coordinates
(x, y) that map the facial points on a person’s face. Though newer algorithms
leverage a dense “face mesh” with machine learning to infer the 3D facial surface
from single camera input, these models fail to produce superior results when the
acquired images have disturbances and motion [3].

2.3 Spatiotemporal Gaze Architecture

Most works that tackled the task of detecting gaze target prediction constructed
2D representations of the gaze direction, which fails to encode whether the person
of interest is looking onward, backward, or sideward. Chong et al. [2] proposed
to use a deep-learning network to construct a 3D gaze representation and incor-
porate it as an additional feature channel. The input to their network was the
video frame scene, the heads positions in the frame, and the reciprocal cropped
head images. However, they did not provide a face-detection model to generate
this input automatically. In addition, Chong et al.’s work applied α - a learned
scalar that evaluates whether the person’s object of attention is inside or outside
the frame, with higher values indicating in-frame attention. Yet, when the per-
son’s object of attention was outside the frame, they did not examine the cases
in which the object of attention was the camera itself.

2.4 Eye-Context Interaction Inferring Network

Zhang et al. [21] provided a novel end-to-end model for onfocus detection. The
model, named “Eye-Context Interaction Inferring Network” (ECIIN), is a deep
learning architecture incorporating the VGG architecture for feature extraction
of the eyes region and a context capsule network (CAP) [9]. Inside the ECIIN,
Zhang et al. applied several network modules that implicitly explore eye-context
information cues by casting the whole learning problem as an image categoriza-
tion task. As it shows, Zhang et al.’s model does not take advantage of Yang et
al.’s [20] publicly available face detection dataset [20], which is rich with labeled
data and suitable for training a model for such a task. Furthermore, they do not
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employ a well-known, state-of-the-art detection model that can be more accu-
rate and robust using transfer learning techniques. Finally, their model was not
trained for multiple object detection in the same image.

3 Materials

3.1 Benchmark Datasets

WIDER FACE Dataset [20]. This dataset is a subset of the publicly available
WIDER dataset [19]. Currently, WIDER FACE dataset is one of the most exten-
sive publically available datasets for face detection. It contains 32,203 images and
393,703 labels of faces with a wide range of scale, poses, and occlusion variabil-
ity. Each recognizable face in the WIDER FACE dataset is labeled by bounding
boxes, which must tightly contain facial landmarks (FL) (e.g., forehead, chin, and
cheek). In the case of occlusion, the face is labeled with an estimated bounding
box.

VideoAttentionTarget Dataset [2]. This dataset was created specifically for
video gaze target modeling and accommodated 1,331 annotated videos of peo-
ple’s dynamic gaze behavior in diverse situations. The videos, which were gath-
ered from YouTube, are of various domains, and they were trimmed to con-
tain dynamic gaze behavior in which a person of interest can be continuously
observed. A trimmed video duration ranges from 1–80 s.

OFDIW Dataset [21]. The dataset has several unique characteristics: (1) the
dataset contains videos of individuals during face-to-camera communication; (2)
the data is collected from a single camera point-of-view, and most of the recorded
faces are completely visible; (3) the camera is focused on the presented individual
where there is very little change between frames. The dataset comprises 20,623
unconstrained images with good age diversity, facial characteristics, and rich
interactions with surrounding objects and background scenes. Therefore, while
the OFDIW dataset provides a great starting point, it lacks a few components
crucial for onfcous detection in the OR settings. For that reason, we created our
unique datasets.

3.2 Our Datasets

Our datasets consist of webcam video recordings from three different setups - one
from medical simulations (MS) and two from real-life OR settings (See Fig. 1).
The first OR dataset focuses on anesthesiologists’ work (See Fig. 1-B), and the
second on the surgeon’s work during minimally invasive thoracic surgery (See
Fig. 1-C).

Our simulations combine two main components: a high-fidelity manikin that
mimics the human body and its physiological responses and a patient monitor
that presents the patient’s vital signs. Data includes 31 simulations with 33
residents, and the setup was located inside the hospital’s post-anesthesia care
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Fig. 1. Illustration of the images in our dataset. (A) Simulated patient monitor point-
of-view. The participants’ faces are manually blurred; (B) Real patient monitor point-
of-view; (C) Thoracic surgery setup. All shown subjects have given their consent to
have their pictures featured.

unit (PACU), using real-life medical equipment and utilities. To document the
resident’s visual patterns during MS, we collected data using a single webcam
above the patient monitor (See Fig. 1-A). The simulations dataset contains 31
videos, each approximately 20 min long.

Over 1200 frames of MS have been extracted from the videos. The appearing
faces were manually labeled with bounding boxes suitable for the YOLO network,
and an independent human observer marked the events of direct eye contact with
the monitor. These events are classified as “Onfocus” or “Out of focus” while
maintaining a class-balanced and diverse dataset (see Fig. 2).

Fig. 2. The onfocus detection task labels. All shown subjects have given their consent
to have their pictures featured.

To capture the anesthesiologist VA, we placed the webcams above two OR
monitors - a patient monitor and a ventilator monitor. Ten different anesthesi-
ologists (6 male, 4 female) were recorded during 11 surgeries.

Four thoracic surgeons (all male) were recorded by placing the webcams
on top of a screen tower (See Fig. 1 - C). A board-certified thoracic surgeon
and a resident executed each surgery. The OR dataset contains 11 videos, each
approximately 2 h long.

The OR datasets comprise 1873 frames (1473 frames of anesthesiologists
and 400 frames of surgeons) from the available OR videos. These frames were
manually labeled as described for the MS dataset (see Fig. 2). Once again, we
made sure that the dataset was balanced.
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The Institutional Review Board of Rambam Health Care Campus approved
the study.

4 Methods

4.1 Pipeline Construction

For face detection, we trained YOLOv7 on the WIDER FACE dataset [20]. For
each detected bounding box prediction, an FL algorithm was applied. We used
only the coordinates visible in the collected data - eyes, nose, and mouth.

The coupling of YOLOv7 trained for face detection with a FL detector is
a suitable replacement for Zhang et al. [21] ECIIN-designed network modules.
Our modifications harness the benefits of well-trained object detectors and large
datasets and thus produce superior results. Then, once the region of interest is
located, we apply the process described in Zhang et al. work to generate the
onfocus detection.

Lastly, we modified Chong et al. work by adding the ECIIN. This modifica-
tion has improved Chong et al. model performance in cases where the object of
attention is “out-of-frame”.

The complete end-to-end pipeline is depicted in Fig. 3.

Fig. 3. End-to-end framework pipeline. The Spatiotemporal prediction is indicated by
a bounding box over the allocated head and a heatmap over the object of attention.
The ECIIN network classification confidence is indicated by color, where green is for
high confidence and red is for low confidence. The score next to the bounding box is
the prediction probability. (Color figure online)

4.2 Implementation

The training of the YOLOv7 for face detection was executed using AdamW
optimizer with an initial learning rate of 1E-3 and weight decay of 5E-3. The
training procedure ran for 250 epochs with a batch size of 64, and the loss
was calculated using the YOLO loss function. To avoid overfitting, we stopped
training when the validation loss increased.

The ECIIN and the Spatiotemporal model have been fine-tuned based on
their provided source code. The trained YOLOv7 was fine-tuned by training it
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for another 60 epochs. Again we stopped the training process when the general-
ization error increased.

The models are implemented in PyTorch 1.7.1 and trained using 2 NVIDIA
RTX A6000 GPUs.

5 Results

5.1 Ablation Study of the End-to-End Pipeline

The following results are generated by utilizing the published models’ weights
and without fine-tuning the hyper-parameters:

Table 1. Results of the proposed modifications on different benchmarks and compar-
ison to other architectures

Model Task Dataset Accuracy F1-Score

YOLO5Face [8] Face Detection WIDER Face 86.55% -

YOLOv7 & FL 87.03% 0.85

ECIIN [21] Onfocus Detection OFDIW 84.71% 0.90

ECIIN [21] with YOLOv7 & FL 84.97% 0.90

Spatiotemporal [2] Gaze Target Prediction VideoAttentionTarget 86.12% 0.85

Complete pipeline 87.2% 0.86

5.2 Evaluation of the Proposed Framework on Our Datasets

We fine-tuned the different models using the MS dataset and evaluated their per-
formance on our labeled OR frames. We applied 5-fold cross-validation, dividing
the dataset into 70% train, 10% validation, and 20% test. Throughout this pro-
cedure, we avoided using the same videos for both the training and testing of
the model.

To assess the Spatiotemporal model [2] onfocus detection performance, we
used our YOLOv7 model for face detection and addressed the Spatiotemporal
model predictions as binary classification (i.e., the object of attention is inside
the frame or outside) (Table 2).

Table 2. Models onfocus detection results on MS frames.

Model Train Dataset Test Dataset Accuracy F1-Score

ECIIN MS MS 63.98% ±2.53% 0.64 ±0.03

Spatiotemporal 71.03% ±1.87% 0.72 ±0.11

Complete pipeline 89.22% ± 1.26% 0.87 ± 0.02
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Table 3 results are generated by testing the fine-tuned models on the OR
datasets.

Table 3. Models onfocus detection results on real OR frames.

Model Train Dataset Test Dataset Accuracy F1-Score

ECIIN MS OR-Anesthesiologists 52.44% 0.55

Spatiotemporal 76.44% 0.77

Complete pipeline 86.43% 0.87

ECIIN MS OR-Surgeons 61.19% 0.59

Spatiotemporal 75.88% 0.73

Complete pipeline 90.01% 0.90

6 Discussion

In the field of surgery and anesthesiology, eye tracking became a popular method-
ology for investigating the visual behavior of physicians in their natural envi-
ronment. However, most eye-tracking technology is intrusive, interferes with the
participants’ natural workflow, and is unsuitable for prolonged data collecting.

Therefore, we employ webcams, which are considered non-intrusive, and pro-
vide continuous visual behavior data in real-time without interfering with the
medical personnel workflow. This work presents an end-to-end pipeline for pro-
cessing and analyzing raw video recordings of preoperative team members’ work-
flow in real-life OR settings. The data was collected via two webcams inside the
OR and later processed with a deep-learning model for gaze target prediction.
The first step in the pipeline is to locate the masked faces in a frame and, for
each detected face, to extract the eyes region. To do so, we harnessed the poten-
tial of YOLOv7, a state-of-the-art object detection model, and a well-trained
model for FL detection. After the faces and eye regions are allocated, Chong et
al. [2] model deduces if the object of attention is located in the frame based on
the α scalar value. In the last stage of the pipeline, we applied Zhang et al.’s [21]
model for onfocus detection. These modifications have proven fruitful in making
our model more robust and accurate than the original models (See Table 1) and
suitable for real-life OR settings (See Table 3). In addition, our approach is not
limited by the number of participants or their distance from the cameras.

It is important to note that although the complete pipeline was not fine-tuned
using the public datasets it was tested on, it achieved better results. Furthermore,
the complete pipeline has a significantly faster average inference speed, at 23
FPS, compared to other models. However, more thorough research is required
to quantify the influence of each component on the framework performance.

We recognize that our small-scaled datasets are a limitation of this study.
Indeed, further work is required to fully explore the applications of gaze target
prediction in the OR settings. Another significant limitation is the camera field
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of view. There have been occasions in which the camera has not captured the
participants while they had a clear view of the screen. This limitation can be
overcome by adding more cameras to watch over different areas.

Prospect of Application: This unique approach for eye-tracking in a real-
life OR setting may provide fresh and essential insight into surgery, anesthesia,
and other fields. In the future, we trust that our non-intrusive framework could
lay the groundwork for using gaze patterns, specifically onfocus detection, as
an early alarm system to reduce clinical errors and as a metric to assess VA.
In addition, gaze target prediction may facilitate developing an empiric metric
for investigating medical personnel VA and evaluating its impact on patient
outcomes.
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