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ABSTRACT

Clinicians’ decision-making is of utmost importance during critical situations. Thus, integrating Clinical
Decision Support Systems (CDSS) may assist the medical staff by enhancing the decision-making process,
eventually improving patient outcomes. The potential of an autonomous CDSS, proficient in predicting and
guiding medical treatment, is significant—especially in situations where every second counts.

We proposed a methodology to design a CDSS based on observational data of clinical procedures. This
approach employs graph-convolutional networks (GCN) to encapsulate medical knowledge from simulated
clinical procedures with sequential data. Consequently, our model can extrapolate from these procedures,
identifying novel structural and characteristic combinations. This innovative method harnesses information
that might elude human observers. Moreover, our model generates action sequences that a human physician
has not previously executed.

Traditional techniques tend to fall short in adapting to changing trends, thus failing to anticipate human
actions. Conversely, advanced models like GCN have demonstrated promising potential in tasks like human
action prediction, including activity recognition. We assessed these performances using benchmark datasets,
which yielded encouraging results.

Additionally, we constructed a graph-based CDSS to deliver pertinent medical advice. We outline a
methodology to monitor the procedure’s current stage and predict the physician’s subsequent action, facilitating
time-saving measures like pre-emptive instrument preparation. Our novel CDSS methodology achieved an
F,-score of 0.899 and 0.714 when performing one and two-step predictions, respectively. Furthermore,
our simulations illustrate a considerable time-saving potential, with an average reduction of approximately
00:01:28 + 00:01:15 min in the preparation time for adrenaline dosage, a crucial component for successful
resuscitation.

1. Background

1.1. Graph convolutional network

+ A feature description x; for every node i; summarized in a N x D
feature matrix X, where N is the number of nodes and D is the
number of input features.

+ A representative description of the graph structure in matrix form;

In the last decade, Convolutional Neural Networks (CNNs) have
gained extensive achievements in Euclidean data. However, data in
the real world may have underlying graph structures that are non-
Euclidean. The non-regularity of data structures has led to recent
advancements in new forms of CNNs (Wu et al., 2019).

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016)
are an evolved form of CNNs on graphs, which have already achieved
state-of-the-art results in various application areas (Zhang et al., 2019).
Instead of having an input of 2-D or 3-D arrays, GCN takes a graph
as an input. For these models, the goal is to learn a function of
signals/features on a graph G = (V, E), which takes as input:
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typically in the form of an adjacency matrix A.

This produces a node-level output Z (an N X F feature matrix, where
F is the number of output features per node). Similar to CNNs, a k-layer
GCN is identical to applying a k-layer convolution on the feature vector
x; of each node in the graph. Every layer can then be written as a non-
linear function H!*) = f(H®, A), with H® = X and HD = Z, L
being the number of layers. The specific models differ in how f(.,-) is
chosen and parameterized.

The “graph convolution” applies the same linear transformation to
all node’s neighbors. The difference is in the hidden representation of
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each node, as it is normalized with its neighbors at the beginning of
each layer. Afterward, the network can learn the graph representations
by stacking layers of filters followed by a nonlinear activation function.
This is a low-dimensional representation of the entities and relations in
the graph. They provide a generalizable context about the overall graph
that can be used to infer relations.

The input to graph convolution layer is a set of N node features
from embedding layer h = {h,,h,,...,hy} where h; € R represents
the d-dimensional features of ith node; a set of relation types R =
{ri,ry,....ry}; and a set of relation features m = {m, m,, ..., m; }, where
m,. € R is the feature vector of rth-relation type of dimension d.

1.2. Graph embedding

Generally, graph embedding aims to encode nodes into low-dimens-
ional space, such that similarity in the latent embedded space ap-
proximates similarity in the original high-dimensional graph while
maintaining the graph structure. This can be achieved by solving an
optimization problem with an unsupervised learning schema.

In line with the aforementioned definitions and notations, given a
graph G = (V, E), the task of learning graph node embeddings (e.g., L
dimension, L < |V|) can be formulated as learning a projection ¢,
such that all graph nodes (V = v;|i=1,2,...,|V]|) can be encoded
as embeddings from a high-dimensional space into a low-dimensional
space. For this case, the node embedding form is deterministic point
vectors: @ = z; € RL|i=1,2,...,|V].

2. Introduction

In medical emergencies, practitioners grapple with diagnostic un-
certainties and numerous interruptions within chaotic environments.
Swift, coordinated strategies are vital for delivering optimal medi-
cal care amidst such challenges (Gaba et al., 2001; Banning, 2008).
Compounding this is the complexity of medical data and patient infor-
mation, which often present as vague, conflicting, non-interpretable,
or even absent, making the clinical decision-making process more
challenging (Begoli et al., 2019).

The idea of harnessing machine intelligence to assist in complex
medical decision-making has gained traction among clinicians and
Artificial Intelligence researchers alike in recent years (Yang et al.,
2019). The intersection of these fields has given rise to advanced
technologies, such as Clinical Decision Support Systems (CDSS), ca-
pable of providing situation-specific advice to medical staff, thereby
optimizing patient care outcomes (Patel et al., 2009; Begoli et al.,
2019). The evolution of machine learning has enabled computers to
learn from past experiences and recognize patterns within clinical data.
Consequently, future CDSS frameworks are anticipated to extract and
interpret information that might have been otherwise overlooked or
misinterpreted by humans (Sutton et al., 2020; Kawamoto et al., 2005).
Moreover, they are expected to become increasingly autonomous, ex-
tending their functionality beyond suggestions to executing specific
tasks independently (Challen et al., 2019).

Existing CDSS frameworks incorporate either reasoning with medi-
cal knowledge or sequential decision-making, both of which are strate-
gies for reasoning under uncertainty. Most current state-of-the-art CDSS
frameworks are built on knowledge graphs (KG) that amalgamate ex-
pert medical knowledge and clinical treatment guidelines. Schlichtkrull
et al.’s ‘R-GCN’ (Schlichtkrull et al., 2018) paved the way for inte-
grating graph networks for KG embedding. Consequently, numerous
researchers have constructed heterogeneous graphs representing expert
medical knowledge, also known as ‘Medical KG’.

Medical KG are repositories of medicine-related information and
clinical practice guidelines, constructed from large volumes of medical
databases, demonstrating the potential to assist physicians in complex
clinical decision-making (Ernst et al., 2015; Gong et al., 2021). How-
ever, current frameworks, such as MedGraph (Hettige et al., 2020) and
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SMR (Gong et al., 2021), have limitations, particularly in time-critical
clinical situations.

Other works (Nemati et al., 2016; Prasad et al., 2017) have uti-
lized sequential decision-making in clinical decision processes adapt-
able to neural networks, primarily through reinforcement learning
(RL). However, these approaches are not strictly guided by medical
knowledge and guidelines, posing potential safety and accountability
concerns (Giordano et al., 2021). Nevertheless, several other works
have demonstrated promising results by utilizing machine learning
algorithms to diagnose patient clinical conditions (Fitriyani et al., 2020;
Abdel-Basset et al., 2020; Kwan et al., 2020; Kim et al., 2021). These
projects focused on creating tailor-made CDSS implementation that
can take the patient’s vital signs and the administered medications
as input and advise the physicians on the recommended course of
treatment. Their results indicated that the positive effects of the CDSS
derive from compliance with clinical guidelines and integration with
other clinical systems. Yet, it is essential to consider that CDSS are
educational tools that may cause users to rely upon the CDSS for a
specific task. Furthermore, this impact disrupts workflow and increases
task completion time (Sutton et al., 2020).

In contrast, our work posits that a genuinely effective CDSS should
incorporate embedded medical knowledge and sequential decision-
making, particularly in medical emergencies. To date, the combined
strengths of these strategies remain underexplored despite their indi-
vidual areas being extensively researched. Systems integrating these
crucial elements will be able to handle a wide range of decisions,
especially in uncertain scenarios, and adequately assess the impli-
cations of proposed solutions in complex situations with numerous
variables (Challen et al., 2019).

For this work, we propose to utilize Graph Convolution Network
(GCN) models to incorporate these two elements. GCNs have a tremen-
dous expressive power to learn the sequences representations and
have achieved superior performance in embedding domain knowledge.
To demonstrate the GCN’s ability to understand and predict real-
world human actions, we first tackle the Temporal Action Segmentation
(TAS) task using two benchmark datasets of non-medical procedural
activities.

Once we have demonstrated our GCN model robustness, we intro-
duced a methodology to integrate embedded medical knowledge with
sequential decision-making to create a fully autonomous CDSS suitable
for real-time medical assistance. Our CDSS framework can interpret
and reason with clinicians’ workflow, providing autonomous support
in standard and emergency procedures. This unique combination of
knowledge and decision-making offers an improved CDSS framework
compared to existing literature. We evaluated our approach on a real-
life medical activity dataset we collected (Gershov et al., 2021, 2023).
Our CDSS framework successfully predicted the need for adrenaline
dosage and defibrillator shock preparation over a minute before the
physician’s request, underlining its practical utility and efficiency in a
real-life setting.

In summary, this work proposes a framework for integrating CDSS
to assist medical personnel by enhancing their decision-making process,
eventually improving patient outcomes. Our work introduces several
methodological innovations and contributions. Firstly, we proposed
a technique for constructing a CDSS from observations of clinical
procedures using graph convolutional neural networks to generalize
from several simulated procedures. This methodology is suitable for
fast-paced clinical execution, as seen in our reported results. Second,
our proposed methodology incorporates two fundamental elements:
embedded medical knowledge and sequential decision-making. Both
are strategies for reasoning under uncertainty, thus improving our
framework’s resilience to poor data quality and ambiguous information.
Third, our CDSS has been designed to harness the practitioners’ verbal
communication and “think-aloud” process. Thus, we created a system
that does not disturb the clinicians’ workflow. Lastly, we demonstrate
a framework for tracking the current state of a medical procedure and
predicting the physician’s following actions.
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Evidence in text

“I am listening”
“Give me Adrenaline. OK, thank you. Adrenaline is inside.”

Table 1
Example of the speech-based action recognition system output (translated from the original language).
Task Timestamp
Listening to the lungs and heart 00:03:00.520
Adrenaline 0.2-0.3 mg 00:04:28.040
Ventolin Inhalation - Half a cc of Ventolin 00:03:54.540

“We can do Ventolin inhalation”

3. Materials

We evaluated our proposed model on three datasets to demon-
strate the GCN’s potential to understand and predict real-world human
actions. The first two are benchmark datasets for Temporal Action
Segmentation (non-clinical), and the third contains actions executed by
anesthesia residents (clinical).

3.1. Temporal action segmentation datasets

Temporal action segmentation (TAS) is a computer vision task
aiming to segment a video where multiple actions occur sequentially.
Each segment is a pre-defined action label (Zhao et al., 2017). State-of-
the-art TAS models can distinguish hundreds of classes by exploiting
two sources of information - video and text (Li et al., 2021; Sing-
hania et al., 2022). The need to develop algorithms applicable to
real-world scenarios has prompted the development of standardized
datasets. These datasets are composed of videos where the participants
execute a sequence of actions and are annotated with the start and end
boundaries of action segments and their labels (Herath et al., 2017). In
this work, we assessed our methodology for predicting the following
procedural actions based on a given action sequence. Based on the
available datasets, just two focus on goal-oriented, multi-step activi-
ties: ‘50Salads’ (Stein and McKenna, 2013) and ‘Assembly101’ (Sener
et al,, 2022). We used the dataset’s original action class sequences
(i.e., textual), not their visual footage, as the input to our model.
50Salads: This dataset contains 50 videos of preparing two mixed
salads. There are 17 fine-grained action classes.

Assembly101: The dataset contains 362 unique video sequences of
people assembling and disassembling 101 toy vehicles. Assembly101
is annotated with over 1M action segments, bringing about 202 action
classes. On average, each video features an average of 24 action classes.

3.2. Medical simulation dataset

In previous research (Gershov et al., 2021, 2023), we observed that
the conversation among medical personnel in most cases might indi-
cate the physical action being performed. Analyzing the participants’
speech, they could automatically identify and fill in the appropriate
rubrics in a task-specific checklist. To this end, we developed an
end-to-end, fully automatic speech-based objective checklist validation
system that identifies anesthesia residents’ actions based solely on the
participants’ speech.

This system is designed to identify the action currently being exe-
cuted by medical personnel and document it in the simulation checklist.
In each filled-out checklist, the observed task (recognized action) comes
alongside a timestamp representing the estimated time it was executed
(Table 1).

We rely on the dataset collected by our system. The output of the
speech-based action recognition system produces a series of actions
which we refer to as the ‘observed sequence of procedures’. Each action
in the sequence is a task from the checklist, and the length of the
‘observed sequence of actions’ varies from 25-35 actions (repetition is
possible). The checklist depicts the ideal ‘observed sequence of actions’
in two levels: (1) the correct actions required to treat the symptoms and
(2) the optimal sequence of actions. Fig. 1 illustrates a real example
of an ‘observed sequence of procedures’ for the VF scenario. As we
can see, a few actions from the checklist have never been executed by

the anesthesia residents in our dataset. In addition, there are several
repetitions in the residents’ sequence of actions, indicated by the edges’
width and value. A more detailed description of the dataset and system
is provided in our previous paper (Gershov et al., 2023).

As part of the data collecting process, we deployed four clinical
scenarios: (1) patient with a severe anaphylaxis reaction; (2) postop-
erative patient with severe bradycardia; (3) postoperative patient with
opioid overdose; (4) postoperative patient with severe hypoglycemia.
For each scenario, a suitable detailed task-specific checklist was con-
structed. Each checklist included approximately 35 tasks, and each task
execution quality was scored compared to standard medical guidelines.
The checklist task score is scaled as follows: 0 for not observed, 1 for
needs improvement, and 2 for meets expectations. When the simulation
ended, the evaluator rated the overall resident’s performance on a range
of 1 — 5, where one is considered poor performance.

Fifty-two senior anesthesiology residents, 40 males and 12 females,
participated in their study. Every participant performed both simula-
tion scenarios (64 simulations in total).

We rely on the dataset collected by this system, the filled-out
checklists, as a set of observed procedures, for the training and testing
of the proposed model.

4. Methods

We now present the complete system diagram (see Figs. 2 and 3),
and the following sections will explain the individual components.

4.1. Graph convolutional network - based link prediction

The link prediction problem is defined as follows. Given the node
features X, the model can output whether an edge connects two nodes.
To be more accurate, in a domain-specific graph G(V, E) where V =
{1,2,...,N} is the node set and E C V x V is the link set, GCN utilizes
edges E € G to aggregate and learn node embeddings. The possibility
of a connection is decided according to the similarity score of two node
embeddings (Kipf and Welling, 2016). Link prediction uses the resulting
vectors to find possible and unobserved associations (links) between
two nodes.

When applying the link prediction problem to a GCN model, the
model optimizes the likelihood of connectivity between two nodes
u and v, as a function of the node representation, #,(" and h,D,
computed from the multi-layer GCN:

Yuo = d(h, B 0,5 )

Where y,, is the score between node u and node v. Given an edge
connecting u and v, we encourage the y, , score to be higher than the
score between node u and a different node v/ from graph G.

For this work, the link prediction is achieved via high-order heuris-
tics to extract local enclosing subgraphs around links as the training
data, thus allowing us to utilize a fully-connected neural network to
learn which enclosing subgraphs correspond to link existence.

We will use Zhang and Chen’s work (Zhang and Chen, 2018) to
prove the following:

Definition 1 (Enclosing Subgraph). For a graph G = (V, E), given two
nodes x,y € V, the h-hop enclosing subgraph for (x, y) is the subgraph
Gf}’y induced from G by the set of nodes {i|d(i,x) < hVv d(i,y) < h}.
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Since G" , contains all h-hop neighbors of x and y, we than have the
following theorem.

Theorem 1. Any h-order heuristic for (x,y) can be accurately calculated
from G! .

However, a very large 4 is needed for learning high-order heuristics.
Thus, the following analysis proves that learning high-order heuristics
is also feasible with a small A.

We support this first by defining the y-decaying heuristic that, under
certain conditions, can be well approximated from the A-hop enclosing
subgraph. Furthermore, Zhang and Chen’s work show that the most
well-known high-order heuristics can be unified into this y-decaying
heuristic framework.

Definition 2 (y-decaying Heuristic). A y-decaying heuristic for (x, y) has
the following form:

(o]
H(x,y) =1 ) 7' 0D @)
I=1
where y is a decaying factor between 0 and 1, # is a positive constant
or a positive function of y that is upper bounded by a constant, f is a
non-negative function of x, y,/ under the given network.

Theorem 2. Give y-decaying heuristic H(x,y) = 'IZ[’L Yy, if
f(x,y,1) satisfies the following properties:

« f(,p,0) < A where A < y7!
* f(x,y,1) is calculable from Gi”y for 1 =1,2,...,g(h), where g(h) =
ah+ b with a,be Nand a >0

By assuming over the g(h) terms, we can approximate the y-
decaying heuristic as follow.

g(h)

Hx,y) =12 7 fop.D). 3)
I=1

The approximation error is bounded as follows.

|H(x,y) - FI(X, »l=n Zfig(h)ﬁ-l }’lf(x’ »h<n Ziah+b+l 71/1[ =

f](}’ﬂ)ah+b+l(1 _ ]/A)_l

Thus, H(x,y) can be approximated from ch!,y’ and the approxima-
tion error decreases at least exponentially with h.

In this work, we applied the SimRank score (Jeh and Widom, 2002),
which is motivated by the notion that two nodes will be considered
similar if their neighbors are similar. It is defined in the following
recursive way: if x = y, then s(x, y) := 1; otherwise,

Z”EI—(X) ZIJEIW(y) S(d, b)
[Tl - 1T ()

Once the link-based similarity is calculated, we apply the Binary
Cross-entropy with logits as the loss function.

;v €10,1] C)

s(x,y) ==y

4.2. A novel approach to embed medical knowledge

We now describe our novel approach to embed medical knowledge
from the ‘observed sequence of procedures’ into a stochastic policy the
medical personnel follows.

We define a data structure we call the ‘Observed Procedures Graph’
(OPG). In the OPG, there is a single node for each observed action a,
and there is an edge from a, to g, if there was one procedure P in which
a,; was executed immediately before a,. Suppose the same transition is
repeated, e.g., from a; to a,. In that case, they are accumulated and
documented as a single directed edge with a label representing the
number of observed transitions. The OPG depicts the collected database
and the ‘observed sequences of procedures’ via graph visualization (See
Fig. 1).

It is vital to notice that although medical planning allows shifts
in the chronological order of actions, the order is not sporadic. Since
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physician behavior is based on medical knowledge and clinical guide-
lines, we claim that a computer can find patterns and rules in physi-
cians’ actions. Therefore, we can exploit information in the OPG model
to extract an implicit representation of these rules and medical knowl-
edge. Nevertheless, the information presented in our OPG is sparse and
often incomplete.

The phenomenon of incomplete knowledge affects prediction model
accuracy in addition to having devastating results on the process of em-
bedding knowledge (He et al., 2020). A recent paper by He et al. (2020)
proposed harnessing the potential of graph networks to overcome this
challenge. In our study, we applied similar methods, precisely the link
prediction task, to find new patterns and sequences in the OPG. By
doing so, we can enrich our database with a new’sequence of actions
that have yet to be observed.

We start by embedding the graph. From the set of ‘observed se-
quences of procedures’, we omit a procedure P,, and construct an
OPG; (OPG without the omitted procedure P)) from the remaining
procedures. Afterward, the OPG;,, still in its graph structure, is passed
into a GCN, producing an embedded OPG; graph. Here we use the
‘node2vec’ algorithm (Grover and Leskovec, 2016), which optimizes a
neighborhood-preserving objective by simulating biased random walks
from each node of the graph to sample directed acyclic sub-graphs. (See
lines 1-12 in Algorithm 2 and Algorithm 1) This methodology balances
the exploration—exploitation trade-off, which leads to representations
obeying a spectrum of equivalences (Grover and Leskovec, 2016). The
main advantage of graph embedding is to encode nodes into a latent
vector space, which will later allow us to quantify node similarity. From
this point forward, when we refer to the OPG model, it will be the
embedded graph - OPGp.

After obtaining the embedded OPG (OPG), we now proceed with
the next step — train a link prediction model called the ‘Implicit
Procedures Graph’ (IPG). In this process, we mask (remove label) a
random node and all its edges from the previous omitted procedure
P, and pass it through the GCN to produce another graph embedding.
The training objective is to correctly predict the label of the masked
node and the masked edges, whether there is an edge between the
masked node and any other node in P, (See lines 13-19 in Algorithm 2).
Specifically, the ‘linking’ process is based on a similarity score between
nodes and edges embedding while using the Binary Cross-entropy to
calculate the model loss. Such a training scheme makes this model
bidirectional (See lines 13-19 in Algorithm 2).

The trained link predictor model allows us to find hidden rela-
tions and connections in the embedded OPG. The new information
will enrich the representation and may compensate for the missing
procedures.

The IPG model is the final step in embedding medical knowledge.
Once the IPG is well trained, after a few modifications to the model
we will elaborate on in the next paragraph, it can provide us with
probabilistic predictions of the following anticipated action. To our
knowledge, we are the first to use modern graph network techniques
to embed medical knowledge from observations of clinical procedures.

Algorithm 1 GenGraph - Graph Generation Function

1: Input: {z,...

2: Output: {V,E}

3: V ={a;|3i,a; € m;} #Set of vertices

4 E = {{a,d |{i | j,mljl=anmlj+1] =d}|),ad €V #Setof
edges

,m,} #Set of observed execution traces

4.3. Action anticipation

Action anticipation refers to using a model to predict ahead of
time, where the ‘prediction horizon’ defines the extent of the future
predictions (Herath et al., 2017; Chandra et al., 2021).
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Algorithm 2 IPG Construction - Pseudo Code

Juy

: Input: H = {xy,...,7,},

2: nn.GCN  #Graph convolution neural network

3: Output: I PG

4: GCN.Initialize = True #Initialize model weights
5: GCN.Task = LP #Link Prediction

6: GCN.Loss = BCEWithLogits #Binary Cross Entropy with Logits
7: N = NumEpochs #Number of epochs

8: n=|H| #Number of procedures in H

9: fori=1to N do

10: for k=1tondo

11: OPG* = GenGraph(H \ {x;})

12: OPG!, = node2vec(OPG*)

13: G* = GenGraph({z; })

14: j=rand(l,...,|{z;}|)

15: Gk = GF

16: G*J . V[jl=unk #Replace label to "unknown"
17: G E[{a,d')|aud =V[jl]] = NaN

18: G'Ej = node2vec(G*)

190 IPG=GCN.Train(OPGX, G/, G*)

20: end for
21: end for

To achieve this, we fine-tune the link-prediction model described
above on a slightly different task — to predict the following action.
Precisely, for the IPG model to predict an action, we modified it by
adding a softmax activation layer at the end of the network and apply-
ing argmax to choose the most probable action to make a prediction.
Now, to predict more than a single action (one step ahead), we apply
this predictor recursively. We assume the most likely action in step k—1
was correctly predicted and use the network to predict the k—th action.
The loss of each prediction was calculated using the MSE between the
probability of the prediction and the ground truth action. The total loss
was averaged based on the length of the procedure. Note that this task
is not bidirectional, unlike the link prediction task.

To evaluate the execution of action anticipation, we can address the
task as a multi-class classification and assess our model performance
using the F;-score (Dong et al., 2022).

4.4. Implementation details

As mentioned earlier, each simulation checklist report was gener-
ated as a chronologically ordered sequence of clinical actions in the
form of a table. We then transform the table into a procedure using
‘NetworkX’ (Hagberg et al., 2008), and by joining all of the procedures
together, we form a graph. This is the foundation for the framework
OPG.

The embedding of medical knowledge was achieved by using a GCN
for graph representation and Link Prediction for finding new connec-
tions and patterns in the directed graph. The network architecture is as
follows: first, the input OPG graph is passed into a graph embedding
layer. We concatenate the various contextual attributes for each entity
in the graph to obtain their embeddings. These embeddings form an
initial feature vector of entities to be used in the training. Afterward,
we apply six layers of graph convolutions and batch normalization
followed by the Sigmoid function. Now we can add new information to
our model by training it with the link prediction task. As of now, the
OPG model is referred to as IPG. We evaluate the IPG new connections
under the closed-world assumption, in which unobserved connections
between two nodes in a given executed procedure are false. This as-
sumption transforms the evaluation into a well-defined task, as models
are judged solely by their ability to fit known data. The loss function
on the link prediction task is the binary cross-entropy with logits.
Afterward, once the model was sufficiently trained, i.e., there was no
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evidence of improvement in the accuracy and loss values after several
epochs, we evaluated the IPG model domain knowledge (embedded
medical knowledge) by predicting the residents’ future actions.

The computing infrastructure for running experiments included a
single NVIDIA Tesla V100 GPU with 32 GB of memory and a Linux
20.04.2 LTS operating system. The proposed network was implemented
using PyTorch 1.9. The dimension of contextual node embeddings was
set to 1024. The network was trained from scratch for 120 epochs,
while the fine-tuning steps were trained with an additional 30 epochs.
We also experimented with other settings and found that small changes
did not change the results much. Both training and fine-tuning stages
were trained with a batch size of 1 using the binary cross-entropy with a
logits loss function. The model parameters were trained with an ADAM
optimizer with a learning rate of 0.0001 and 0.001 for training and fine-
tuning steps, respectively. The best model parameters were selected
based on the development set. In constructing our network architecture,
we applied methods from ‘NetworkX’ - a Python language package for
exploring and analyzing networks and network algorithms.

4.5. From action prediction to CDSS

Several medical actions, such as administering medication or defib-
rillator shocks, require time for preparation. In time-stressed situations,
saving seconds from these procedures is vital. Thus, we develop a
relatively simple CDSS that advises the medical personnel to prepare
these instruments in advance. The framework predicts that one of these
actions will occur in one of the next k steps with a probability greater
than some threshold 7.

We now describe three aspects of CDSS to which we assessed
our method: defibrillator management, medication management, and
time-saving.

4.5.1. Defibrillator management

To validate our results, we calculated the accuracy of the defib-
rillator usage — the system should never predict a defibrillator in
the anaphylaxis scenario. It should predict it at least once for severe
bradycardia.

4.5.2. Medication management

Adrenaline injection plays a crucial role in the successful man-
agement of resuscitation. Based on the Advanced Cardiovascular Life
Support (ACLS) algorithms, the patient is expected to be treated with
several adrenaline injections at constant intervals during resuscitation.

We examined the number of times the system would have suggested
the adrenaline injection during resuscitation based on the resident
actions during this time interval. We compared this number and the
number of times the examinee requested an adrenaline injection with
the required amount (based on guidelines). We evaluated the results
using the interclass correlation coefficient (ICC) (Koo and Li, 2016).
This descriptive statistic assesses the consistency of the quantitative
measurements made by different observers measuring the same quan-
tity. An ICC score lower than 0.5 is considered poor reliability, 0.5 —
0.75 is considered moderate reliability, 0.75 — 0.9 is good reliability,
and greater than 0.9 is excellent reliability. We calculated the ICC score
based on the One-way random effects formula:

MSg—MSg

Vs, ®)

Where M Sy is the mean square of each rater and M.Sj is the mean
square for error.

For this work, we applied this metric to assess the level of agreement
between the recommended guidelines and the framework, and the
resident performance.
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Fig. 1. VF observed sequences of procedures. Each vertex, observed action, represents a different task from the checklist, and the width of each edge represents the number of
observed transitions. The appearing value indicates the most repeated transition. The arrow on the edges indicates their chronological order.
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Fig. 2. Illustration of the proposed pipeline for embedding medical knowledge via GCN.

Fig. 3. Illustration of the proposed graph-based CDSS.

4.5.3. Time-saving

Another aspect of the CDSS we assessed is the time that could be
saved by using our system. We predicted the following two actions:
adrenaline injection and defibrillator usage. The “horizon” for both
actions is k = 1,2. When the system has a high enough confidence, r =
0.75, about one of the actions, it provokes a suggestion. We also used
a 3-fold cross-validation approach to validate the following results.

5. Results
5.1. Evaluation of action prediction accuracy
Our action anticipation system was evaluated based on a prediction

of one and two steps ahead. Both TAS datasets were divided to train-
validation-test sets (70%:15%:15% ratio, respectively), and a 10-fold
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Table 2
Model evaluation results on temporal action segmentation and medical
simulations datasets.

Dataset Task F,-score

- One-step prediction 0.611
a McK 201

50Salads (Stein and McKenna, 2013) Two-step prediction 0.551
One-step prediction 0.690
Assembly101 (Sener et al., 2022) Two-step prediction 0.627
Medical Simulations One-step predllctlhon 0.899
Two-step prediction 0.714

Table 3
Model prediction results for adrenaline injection and defibrillator
usage. The time format is MM:SS + Standard Deviation.

Action One step Two steps
Adrenaline 00 :38+00: 12 01 :34+01:07
Defibrillator 00 :53+£00: 44 01 :22+01:06

cross-validation approach was applied to validate the reported re-
sults. Likewise, the medical dataset was divided to train-validation-test
sets (80%:10%:10% ratio, respectively), and a 5-fold cross-validation
approach was applied to validate the results in Table 2.

Ke et al.’s work (Ke et al., 2019) is the only published paper that
evaluated action anticipation on the 50Salads datasets. Although their
results are superior to ours, 65% and 61%, respectively, they used the
video sequences and the labels. As for Assembly101, to our knowledge,
we are the first to present results for the action anticipation task. We
also performed an ablation study to determine the contribution of each
network component to the overall system, which is included in the
appendix.

5.2. Evaluation of CDSS

5.2.1. Defibrillator management accuracy

In 3 of the 31 bradycardia simulations, the resident failed to request
the defibrillator, while the system successfully predicted the need for
a defibrillator in all 31 simulations. This shows the potential of our
system to serve as a decision-support system in a real clinical environ-
ment. Out of 31 anaphylaxis simulations, our system failed to predict
the correct treatment in just two simulations and suggested using a
defibrillator. Based on these results, our system can correctly predict
the use/misuse of the defibrillator.

5.2.2. Medication management accuracy

As mentioned in Section 4.5.2 (“Medication Management”), we
examined the number of times the system would have suggested the
adrenaline injection during resuscitation based on the resident actions
during this time interval. We compared this number with the expected
amount, which is based on clinical guidelines (i.e., ground truth). We
execute the same procedure for the number of times the examinee
requested an adrenaline injection. The system has outmatched the
resident with an ICC of 0.871, while the human participants achieved
an ICC score of 0.510. This means the system can correctly identify the
need for an adrenaline injection. This implies it can identify and follow
ACLS protocols, even in real-life settings.

5.2.3. Time-saving evaluation

Table 3 shows the average time saved by using our system, the
average time between when our system predicted one of these actions
and when the resident performed it. As the results indicate, we can
predict actions almost a minute before executing them accurately.
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6. Discussion

Most of today’s CDSS frameworks are based on knowledge graphs
(KG), where the knowledge is stored in a highly expressive fashion
and implicit hierarchical construction. This makes KG beneficial to
many real-world settings, including the medical domain. Nevertheless,
these systems cannot interpret and reason with clinicians’ workflow;
therefore, they are unsuitable for real-time medical assistance.

In this study, we described a technique to overcome this challenge
by embedding medical knowledge from observations of procedures.
We utilized a GCN to generalize from a few observed procedures to
construct an ’Observed Procedures Graph’ (OPG). Afterward, a ‘Link
Prediction’ technique allowed us to find new procedure patterns and
add them to the model. We referred to it as an ‘Implicit Procedures
Graph’ (IPG). We investigated our proposed method on benchmarks
of procedural actions originating from different domains to assess its
robustness. In addition, we also assessed the framework results on
real clinical datasets. The empirical results indicate that observations
of action sequences are a suitable alternative for embedding medical
expert knowledge. In addition, the proposed methodology is a suitable
solution to overcome data limitations.

We then examined the applicability of combining our methodology
with the speech-based action recognition system to construct a CDSS
suitable for real-life medical assistance. This is considered a challenging
objective because of the required level of awareness and understand-
ing expected of the system, which will not interfere with medical
personnel’s work except when needed. In addition, during medical
emergencies, CDSS is expected to encounter ambiguous information
and numerous disruptions in the work environments. These factors
combined may affect the performance of the CDSS.

The combined system is entirely autonomous, and a fully automatic
pipeline from raw audio files to a CDSS was established. Since the sys-
tem only requires audio signals, it does not interfere with the medical
personnel workflow and minimizes the invasion of privacy.

We first tested our system’s ability to predict the next step in the
procedure. We then evaluated the system’s applicability using two
practical applications: medication management and real-time interven-
tion. Both evaluations have shown promising results on the collected
simulation data. Therefore, our framework has proven its potential to
supervise the activity during a medical emergency and to assist in a
complex decision-making situation.

Yet, the method we used for action recognition relies solely on
keywords in the participants’ speech, therefore, has limited accuracy.
A significantly more extensive database is required to develop a more
complex algorithm.

Another limitation we need to consider is the lack of sufficient
participants. By exposing the model to a broader range of physicians’
behavior, we can improve its predictions and certainty. We continu-
ously collect data from many participants and a more comprehensive
range of medical scenarios. This will facilitate the development of more
complex frameworks, enhancing the CDSS functionality.

Medication dosage, video recording, and temporal information can
provide the model with additional information which produces better
predictions. Another aspect to consider is how these systems can be
applied in the hospital and assist the medical personnel in working
without disturbing the workflow.

7. Ethical considerations

First, we assert that all procedures contributing to this work comply
with the ethical standards of the national and institutional committees
on human experimentation and with the Helsinki Declaration.

Second, the CDSS we describe only offers support and suggestions
to the medical personnel, which they can easily accept or ignore.
This approach allows physicians to include our advanced CDSS as a
component of their decisions while maintaining professional autonomy.
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Thus, the medical personnel is still accountable for any action executed
during treatment. In addition, any procedure that contains harmful
actions is removed from our database. It is important to note that our
CDSS was not used to treat real patients but was evaluated offline based
on data from medical simulations. Thus, no patients were involved in
either data collection or the CDSS evaluation.

8. Conclusion

We developed a CDSS framework that combines medical knowledge
obtained by observing medical procedures with sequential informa-
tion. Our model can generalize the procedure and find new possible
combinations by learning a given sequence’s unique structure and
characteristics. This novel approach can leverage information and ob-
servations otherwise unobtainable by humans. Moreover, based on
medical knowledge and clinical practice guidelines, our model can
generate new sequences that human physicians have yet to perform.

In this work, we present a completely autonomous CDSS framework.
In future work, we will examine potential downfalls, interface design,
and the mental model of human users. We should keep in mind that
judging whether a physician should accept the suggestion is an addi-
tional burden in an intense setting. In addition, further research will
also address the implication aspects in real-life hospital settings and
the effect of such framework on healthcare professionals’ workflow.
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